GARIS SINGGUNG PERSEKUTUAN LUAR (GSPL) DUA LINGKARAN
PENGERTIAN GARIS SINGGUNG PERSEKUTUAN LUAR (GSPL) DUA LINGKARAN
Diketahui lingkaran besar A dengan panjang jari-jari R dan lingkaran kecil B dengan panjang jari-jari r. Garis PQ merupakan garis singgung persekutuan luar lingkaran A dan lingkaran B dengan panjang PQ = m, sehingga garis AP dan garis BQ tegak lurus terhadap garis PQ (garis singgung lingkaran selalu tegak lurus dengan jari-jari lingkaran di titik singgung). Garis AB adalah garis yang menghubungkan titik pusat lingkaran A dengan titik pusat lingkaran B, sehingga AB = d merupakan jarak pusat kedua lingkaran. Garis QT sejajar dan sama panjang denga garis AB, sehingga AB = QT = d. Garis BQ sejajar dan sama panjang dengan garis AT, sehingga AT = BQ = r sehingga PT = R - r.
RUMUS GARIS SINGGUNG PERSEKUTUAN LUAR (GSPL) DUA LINGKARAN
Segitiga PQT merupakan segitiga siku-siku yang siku-siku di titik P, dan QT merupakan sisi miring sehingga berlaku rumus Pythagoras:
Karena QT = AB = d, PQ = m, dan PT = R - r, maka:
m = PQ adalah panjang garis singgung persekutuan luar.
d = AB adalah jarak titik pusat kedua lingkaran.
R adalah panjang jari-jari lingkaran besar.
r adalah panjang jari-jari lingkaran kecil.
R > r.
Perlu diingat, bahwa PQ = m, (R - r), dan AB = d merupakan sisi-sisi sebuah segitiga siku-siku dimana AB merupakan sisi miring dan PQ dan (R - r) merupakan sisi siku-siku. Untuk lebih memahami tentang materi garis singgung persekutuan luar dua lingkaran, silahkan pelajari contoh soal yang berikut.
CONTOH SOAL DAN PEMBAHASAN.
Diketahui dua lingkaran dengan pusat P dan Q, jarak PQ = 26 cm, panjang jari-jari lingkaran masing-masing 12 cm dan 2 cm. Panjang garis singgung persekutuan luar kedua lingkaran tersebut adalah . . . .
Komentar
Posting Komentar